Abstract

Snoring is common in the general population and the irregularity could lead to the presence of Obstructive sleep apnea. Diagnosis of OSA could therefore be made by snoring sound analysis. However, there is still a shortage of robust methods to automatically detect snoring sounds without the need to calibrate for every individual. In this paper, a novel method based on neural network is proposed to classify breathing sound episodes from snoring and non-snoring sound segments. Our snore detection algorithm was applied to the tracheal sounds of nine individuals with different OSA severities. On the testing dataset, the classifier achieved a sensitivity and specificity of 95.9% and 97.6% respectively. Our results indicate that using such a method could help to detect snoring sounds with high accuracy which would be useful in the diagnosis of sleep apnea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.