Abstract

We bring together some known ingredients beyond the standard model physics that can explain the hot big bang model with the observed baryon asymmetry and also the fluctuations in the cosmic microwave background radiation with a minimal set of assumptions. We propose an interesting scenario where the inflaton energy density is dumped into an infinitely large extra dimension. Instead of the inflaton it is the right handed sneutrino condensate, which is acquiring a nonzero vacuum expectation value during inflation, whose fluctuations are responsible for the density perturbations seen in the cosmic microwave background radiation with a spectral index n(s) approximately 1. The decay of the condensate is explaining the reheating of the Universe with a temperature, T(rh)< or =10(9) GeV, and the baryon asymmetry of order one part in 10(10) with no baryon-isocurvature fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call