Abstract
ABSTRACT Memristor technology has become an attractive option for use in-memory architectures, in-memory computing, and logic applications. Memristor crossbar array performance is dependent upon sneak paths. Our research characterises the sneak paths in crossbar arrays where the current can sneak through non-selected cells. We present equations for characterising sneak paths as a function of the size of the array, resistance values, input voltage, and I/O switch-vector. We also derive formulas to calculate the number of sneak paths in various array sizes and describe conditions that determine the length of the sneak paths. The resulting equations enable us to predict the sneak paths and sneak path currents for various array sizes to determine the constraints to the resistive memristor circuit. Our work characterising sneak paths provides boundary conditions for applications that use memristor crossbar arrays and provides insight to memristor crossbar testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.