Abstract

Fast and accurate prospective predictions of regioselectivity can significantly reduce the time and resources spent on unproductive transformations in the pharmaceutical industry. Density functional theory (DFT) reaction modeling through transition state theory (TST) and machine learning (ML) methods has been widely used to predict reaction outcomes such as selectivity. However, TST reaction modeling and ML methods are either time-consuming or data-dependent. Herein, we introduce a prototype seamlessly bridging ML and TST modeling by triggering resource-intensive but much less domain-sensitive DFT calculations only on less confident ML predictions. The proposed workflow was trained and tested on both the Pfizer internal dataset and the USPTO public dataset to predict regioselectivity for SNAr reactions. Our method is accurate and fast, which achieves 96.3 and 94.7% accuracy in predicting the correct major product on Pfizer and USPTO datasets, respectively, in a fraction of conventional TST computing time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.