Abstract

Ultrafast imaging simultaneously pursuing high temporal and spatial resolution is a key technique to study the dynamics in the microscopic world. However, the broadband spectra of ultra-short pulses bring a major challenge to traditional coherent diffraction imaging (CDI), as they result in an indistinct diffraction pattern, thereby complicating image reconstruction. To address this, we introduce, to our knowledge, a new ultra-broadband coherent imaging method, and empirically demonstrate its efficacy in facilitating high-resolution and rapid image reconstruction of achromatic objects. The existing full bandwidth limitation for snapshot CDI is enhanced to ∼60% experimentally, restricted solely by our laser bandwidth. Simulations indicate the applicability of our method for CDI operations with a bandwidth as high as ∼140%, potentially supporting ultrafast imaging with temporal resolution into ∼50-attosecond scale. Even deployed with a comb-like harmonic spectrum encompassing multiple octaves, our method remains effective. Furthermore, we establish the capability of our approach in reconstructing a super-broadband spectrum for CDI applications with high fidelity. Given these advancements, we anticipate that our method will contribute significantly to attosecond imaging, thereby advancing cutting-edge applications in material science, quantum physics, and biological research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.