Abstract
Sn/SnO2@C composite nanofibers were successfully fabricated by a facile annealing strategy. The composite consists of an amorphous carbon matrix encapsulating carbon nanotubes decorated by ultrafine (<10nm) SnO2 nanoparticles, with submicron Sn particles incorporated in the entangled networks of the composite nanofibers. When used as anode material for lithium ion batteries, the Sn/SnO2@C composite nanofibers exhibited high initial charge capacity of 756mAhg−1 at 100mAg−1, excellent high-rate capacity of 190mAhg−1 at 5Ag−1, and excellent capacity retention of 591mAhg−1 after 100 cycles at 100mAg−1. High-resolution transmission electron microscopy, energy dispersive spectroscopy mapping, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were applied to investigate the origins of the excellent electrochemical Li+ storage properties of Sn/SnO2@C. It could be deduced that the ductile carbon matrix and free spaces in the composite nanofiber networks can effectively accommodate the strain of volume change during cycling, prevent the aggregation and pulverization of Sn/SnO2 particles, keep the whole structure stable, and facilitate electron and ion transport through the electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.