Abstract

The first example of metal Sn-fused perylene diimides (PDI) derivative (Sn-PDI) was designed, synthesized, and investigated. To obtain this type compound, a simple one-pot synthesis, named stannylative cycloaddition reaction, has been successfully developed via a palladium-based catalyst system. The novel mechanism exhibits that the reaction experiences oxidative addition, Pd-cyclization, stannylation, Pd-Sn-cyclization, and reductive elimination processes successively. This stannylative cycloaddition does realize unique σ-π hyperconjugation effect and therefore significantly influencing on the photophysical, electrochemical and excited state properties. Compared with those of PDI, both of the absorption and fluorescence spectra of Sn-PDI display large red-shifts over 20 nm. The electron energy levels of Sn-PDI have changed with an uncommon regulation. And Sn-PDI gives a considerably raised highest occupied molecular orbital (HOMO) level of -6.00 eV More importantly, the singlet excitons of Sn-PDI could efficiently intersystem cross (ISC) into triplet state with a long lifetime of 17.8 µs, which is far longer than that (4.4 ns) of PDI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.