Abstract

We report on X-ray spectral evolution of the nearby Type IIn supernova (SN) 2005ip, based on Chandra and Swift observations covering from ~1 to 6 years after the explosion. X-ray spectra in all epochs are well fitted by a thermal emission model with kT > 7 keV. The somewhat high temperature suggests that the X-ray emission mainly arises from the circumstellar medium heated by the forward shock. We find that the spectra taken 2-3 years since the explosion are heavily absorbed N_H ~ 5e22 cm^{-2}, but the absorption gradually decreases to the level of the Galactic absorption N_H ~ 4e20 cm^{-2} at the final epoch. This indicates that the SN went off in a dense circumstellar medium and that the forward shock has overtaken it. The intrinsic X-ray luminosity stays constant until the final epoch when it drops by a factor of ~2. The intrinsic 0.2-10 keV luminosity during the plateau phase is measured to be ~1.5e41 erg/s, ranking SN 2005ip as one of the brightest X-ray SNe. Based on the column density, we derive a lower-limit of a mass-loss rate to be M_dot ~ 0.015 (V_w/100 km/s) M_sun/yr, which roughly agrees with that inferred from the X-ray luminosity, M_dot ~ 0.02 (V_w/100 km/s) M_sun/yr, where V_w is the circumstellar wind speed. Such a high mass-loss rate suggests that the progenitor star had eruptive mass ejections like a luminous blue variable star. The total mass ejected in the eruptive period is estimated to be ~15 M_sun, indicating that the progenitor mass is greater than ~25 M_sun.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call