Abstract

Luminous blue variable (LBV) stars are very massive, luminous, unstable stars that suffer frequent eruptions. In the last few years, these stars have been proposed as the direct progenitors of some core-collapse supernovae (SNe), particularly Type IIn SNe, in conflict with stellar evolution theory. In this paper we investigate various scenarios wherein LBV stars have been suggested as the immediate progenitors of SNe. Many of these suggestions stem from the fact that the SNe appear to be expanding in a high density medium, which has been interpreted as resulting from a wind with a high mass-loss rate. Others arise due to perceived similarities between the SN characteristics and those of LBVs. Only in the case of SN 2005gl do we find a valid possibility for an LBV-like progenitor. Other scenarios encounter various levels of difficulty. The evidence that points to LBVs as direct core-collapse SNe progenitors is far from convincing. High mass-loss rates are often deduced by making assumptions regarding the wind parameters, which are contradicted by the results themselves. A high density need not necessarily imply a high wind mass-loss rate: wind shocks sweeping up the surrounding medium may give a high density shell with a low associated wind mass-loss rate. High densities may also arise due to wind clumps, or due to a previous LBV phase before the SN explodes as a Wolf-Rayet star. Some Type IIn SNe appear to signify more a phase in the life of a SN than a class of SNe, and may arise from more than one type of progenitor. A Wolf-Rayet phase that lasts for a few thousand years or less could be one of the more probable progenitors of Type IIns, and channels for creating short-lived W-R phases are briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call