Abstract

Salt stress is a lethal abiotic stress threatening global food security on a consistent basis. In this study, we identified an AP2 and B3 domain-containing transcription factor (TF) named SmRAV1, and its expression levels were significantly up-regulated by NaCl, abscisic acid (ABA), and hydrogen peroxide (H2O2) treatment. High expression of SmRAV1 was observed in the roots and sepal of mature plants. The transient expression assay in Nicotiana benthamiana leaves revealed that SmRAV1 was localized in the nucleus. Silencing of SmRAV1 via virus-induced gene silencing (VIGS) decreased the tolerance of eggplant to salt stress. Significant down-regulation of salt stress marker genes, including SmGSTU10 and SmNCED1, was observed. Additionally, increased H2O2 content and decreased catalase (CAT) enzyme activity were recorded in the SmRAV1-silenced plants compared to the TRV:00 plants. Our findings elucidate the functions of SmRAV1 and provide opportunities for generating salt-tolerant lines of eggplant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call