Abstract

A smoothing projected gradient (SPG) method is proposed for the minimization problem on a closed convex set, where the objective function is locally Lipschitz continuous but nonconvex, nondifferentiable. We show that any accumulation point generated by the SPG method is a stationary point associated with the smoothing function used in the method, which is a Clarke stationary point in many applications. We apply the SPG method to the stochastic linear complementarity problem (SLCP) and image restoration problems. We study the stationary point defined by the directional derivative and provide necessary and sufficient conditions for a local minimizer of the expected residual minimization (ERM) formulation of SLCP. Preliminary numerical experiments using the SPG method for solving randomly generated SLCP and image restoration problems of large sizes show that the SPG method is promising.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.