Abstract

We present a smoothing projected Barzilai---Borwein (SPBB) algorithm for solving a class of minimization problems on a closed convex set, where the objective function is nonsmooth nonconvex, perhaps even non-Lipschitz. At each iteration, the SPBB algorithm applies the projected gradient strategy that alternately uses the two Barzilai---Borwein stepsizes to the smooth approximation of the original problem. Nonmonotone scheme is adopted to ensure global convergence. Under mild conditions, we prove convergence of the SPBB algorithm to a scaled stationary point of the original problem. When the objective function is locally Lipschitz continuous, we consider a general constrained optimization problem and show that any accumulation point generated by the SPBB algorithm is a stationary point associated with the smoothing function used in the algorithm. Numerical experiments on $$\ell _2$$l2-$$\ell _p$$lp problems, image restoration problems, and stochastic linear complementarity problems show that the SPBB algorithm is promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.