Abstract

In this paper, a smoothing partial exact penalty function of biconvex programming is studied. First, concepts of partial KKT point, partial optimum point, partial KKT condition, partial Slater constraint qualification and partial exactness are defined for biconvex programming. It is proved that the partial KKT point is equal to the partial optimum point under the condition of partial Slater constraint qualification and the penalty function of biconvex programming is partially exact if partial KKT condition holds. We prove the error bounds properties between smoothing penalty function and penalty function of biconvex programming when the partial KKT condition holds, as well as the error bounds between objective value of a partial optimum point of smoothing penalty function problem and its [Formula: see text]-feasible solution. So, a partial optimum point of the smoothing penalty function optimization problem is an approximately partial optimum point of biconvex programming. Second, based on the smoothing penalty function, two algorithms are presented for finding a partial optimum or approximate [Formula: see text]-feasible solution to an inequality constrained biconvex optimization and their convergence is proved under some conditions. Finally, numerical experiments show that a satisfactory approximate solution can be obtained by the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.