Abstract

In this paper, we propose two new smoothing approximation to the lower order exact penalty functions for nonlinear optimization problems with inequality constraints. Error estimations between smoothed penalty function and nonsmooth penalty function are investigated. By using these new smooth penalty functions, a nonlinear optimization problem with inequality constraints is converted into a sequence of minimizations of continuously differentiable function. Then based on each of the smoothed penalty functions, we develop an algorithm respectively to finding an approximate optimal solution of the original constrained optimization problem and prove the convergence of the proposed algorithms. The effectiveness of the smoothed penalty functions is illustrated through three examples, which show that the algorithm seems efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.