Abstract

The planarization of the SiGe virtual substrate surface is crucial for the fabrication of high-performance strained-Si metal-oxide-semiconductor field-effect transistors. In this letter, we report on the smoothing of the inherently crosshatched rough surfaces of SiGe deposited by molecular beam epitaxy on Si substrates by gas cluster ion beams. Atomic force microscopy measurements show that the average surface roughness (Ra) of the SiGe layer could be reduced considerably from 3.2 to 0.7 nm without any crosshatched pattern. Rutherford backscattering in combination with channeling was used to study the damage produced by cluster bombardment. No visible surface damage was observed for the normal-incidence smoothed SiGe with postsmoothing glancing angle cluster ion beam etching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.