Abstract
Let X be an n-dimensional Calabi-Yau with ordinary double points, where n is odd. Friedman showed that for n=3 the existence of a smoothing of X implies a specific type of relation between homology classes on a resolution of X. (The converse is also true, due to work of Friedman, Kawamata and Tian.) We sketch a more topological proof of this result, and then extend it to higher dimensions. For n>3 the "Yukawa product" on the middle dimensional (co)homology plays an unexpected role. We also discuss a converse, proving it for nodal Calabi-Yau hypersurfaces in projective space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.