Abstract

We prove Homological Mirror Symmetry for a smooth d-dimensional Calabi-Yau hypersurface in projective space, for any d > 2 (for example, d = 3 is the quintic three-fold). The main techniques involved in the proof are: the construction of an immersed Lagrangian sphere in the `d-dimensional pair of pants'; the introduction of the `relative Fukaya category', and an understanding of its grading structure; a description of the behaviour of this category with respect to branched covers (via an `orbifold' Fukaya category); a Morse-Bott model for the relative Fukaya category that allows one to make explicit computations; and the introduction of certain graded categories of matrix factorizations mirror to the relative Fukaya category.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.