Abstract

We consider superlinearly convergent analogues of Newton methods for nondifferentiable operator equations in function spaces. The superlinear convergence analysis of semismooth methods for nondifferentiable equations described by a locally Lipschitzian operator in Rn is based on Rademacher's theorem which does not hold in function spaces. We introduce a concept of slant differentiability and use it to study superlinear convergence of smoothing methods and semismooth methods in a unified framework. We show that a function is slantly differentiable at a point if and only if it is Lipschitz continuous at that point. An application to the Dirichlet problems for a simple class of nonsmooth elliptic partial differential equations is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call