Abstract

We investigate a new implementation of the Smoothed Particle Hydrodynamics technique (SPH) designed to improve the realism with which galaxy formation can be simulated. In situations where cooling leads to the coexistence of phases of very different density and temperature, our method substantially reduces artificial overcooling near phase boundaries, prevents the exclusion of hot gas from the vicinity of cold ``clouds'', and allows relative motion of the two phases at each point. We demonstrate the numerical stability of our scheme in the presence of extremely steep density and temperature gradients, as well as in strong accretion shocks and cooling flows. In addition, we present new implementations of star formation and feedback which simulate the effect of energy injection into multiphase gas more successfully than previous schemes. Our feedback recipes deposit thermal energy separately in cold dense gas and hot diffuse gas, and can explicitly reinject cold gas into the hot phase. They make it possible to damp star formation effectively, to reheat cold gas, and to drive outflows into the galaxy halo and beyond. We show feedback effects to be strongest in small mass objects where much of the gas can be expelled. After idealised tests, we carry out a first low resolution study of galaxy formation in a $\Lambda$CDM universe. Feedback results in substantial and mass-dependent reductions in the total baryonic mass gathered onto the final object as well as in significant modulation of the star formation history.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.