Abstract

In this study, we investigate the performance of the smoothed particle hydrodynamics (SPH) method regarding the computation of confined flows in microchannels. Modeling and numerical simulation with SPH involve the representation of flowing matter as distinct mass points, leading to particle discretization of the Navier–Stokes equations. The computational methodology exhibits similarities with other well-established particle methods, such as molecular dynamics (MD), dissipative particle dynamics (DPD), and smooth dissipative particle dynamics (SDPD). SPH has been extensively tested in the simulation of free-surface flows. However, studies on the performance of the method in internal flow computations are limited. In this work, we study flows in microchannels of variable cross-sections with a weakly compressible SPH formulation. After preliminary studies of flows in straight constant cross-section ducts, we focus on channels with sudden expansion and/or contraction. Flow models based on periodic or various inlet/outlet boundary conditions and their implementations are discussed in the context of 2D and 3D simulations. Numerical experiments are conducted to evaluate the accuracy of the method in terms of flowrate, velocity profiles, and wall shear stress. The relation between f and Re for constant cross-section channels is computed with excellent accuracy. SPH captured the flow characteristics and achieved very good accuracy. Compressibility effects due to the weakly compressible smoothed particle hydrodynamics (WCSPH) formulation are negligible for the flows considered. Several typical difficulties and pitfalls in the application of the SPH method in closed conduits are highlighted as well as some of the immediate needs for the method’s improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call