Abstract

Consider a process that jumps among a finite set of states, with random times spent in between. In semi-Markov processes transitions follow a Markov chain and the sojourn distributions depend only on the connecting states. Suppose that the process started far in the past, achieving stationary. We consider non-parametric estimation by modelling the log-hazard of the sojourn times through linear splines; and we obtain maximum penalized likelihood estimators when data consist of several i.i.d. windows. We prove consistency using Grenander's method of sieves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.