Abstract

SUMMARYA smoothed aggregation‐based algebraic multigrid solver for anisotropic diffusion problems is presented. Algebraic multigrid is a popular and effective method for solving sparse linear systems that arise from discretizing partial differential equations. However, although algebraic multigrid was designed for elliptic problems, the case of non‐grid‐aligned anisotropic diffusion is not adequately addressed by existing methods. To achieve scalable performance, it is shown that neither new coarsening nor new relaxation strategies are necessary. Instead, a novel smoothed aggregation approach is developed that combines long‐distance interpolation, coarse‐grid injection, and an energy‐minimization strategy that finds the interpolation weights. Previously developed theory by Falgout and Vassilevski is used to discern that existing coarsening strategies are sufficient, but that existing interpolation methods are not. In particular, an interpolation quality measure tracks ‘closeness’ to the ideal interpolant and guides the interpolation sparsity pattern choice. Although the interpolation quality measure is computable for only small model problems, an inexact, but computable, measure is proposed for larger problems. This paper concludes with encouraging numerical results that also potentially show broad applicability (e.g., for linear elasticity). Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.