Abstract

We develop an efficient multigrid method combined with a high-order compact (HOC) finite difference scheme on nonuniform rectilinear grids for solving 3D diagonal anisotropic convection–diffusion problems with boundary/interior layers. Firstly, we derive a fourth-order compact finite difference scheme to discretize the 3D anisotropic convection–diffusion equation on a rectilinear grid. Then, the resulting large-scale asymmetric linear system of equations is solved by a generalized extrapolation cascadic multigrid (gEXCMG) method based on two novel multigrid (MG) prolongation operators. The highlight of this paper is the application of the quintic Lagrange interpolation and the completed Richardson extrapolation in the design of the new MG prolongation operator on nonuniform rectilinear grids, which can produce a good initial guess (sixth-order approximation to the finite difference solution) for the SSOR-preconditioned biconjugate gradient stabilized (BiCGStab) smoother. In the end, numerical experiments show that the gEXCMG method combined with the HOC scheme can achieve fourth-order accuracy for 3D anisotropic convection–diffusion problems with few smoothing steps on the finest grid. Moreover, the proposed gEXCMG method can offer substantially better efficiency than the state-of-the-art algebraic MG solver, namely, aggregation-based algebraic multigrid (AGMG) method, for large linear systems arising from the discretization of second order elliptic PDEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call