Abstract
We classify all complex surfaces with quotient singularities that do not contain any smooth rational curves, under the assumption that the canonical divisor of the surface is not pseudo-effective. As a corollary we show that if $X$ is a log del Pezzo surface such that for every closed point $p\in X$, there is a smooth curve (locally analytically) passing through $p$, then $X$ contains at least one smooth rational curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.