Abstract

An increasing number of researchers record binocular eye-tracking signals from participants viewing moving stimuli, but the majority of event-detection algorithms are monocular and do not consider smooth pursuit movements. The purposes of the present study are to develop an algorithm that discriminates between fixations and smooth pursuit movements in binocular eye-tracking signals and to evaluate its performance using an automated video-based strategy. The proposed algorithm uses a clustering approach that takes both spatial and temporal aspects of the binocular eye-tracking signal into account, and is evaluated using a novel video-based evaluation strategy based on automatically detected moving objects in the video stimuli. The binocular algorithm detects 98% of fixations in image stimuli compared to 95% when only one eye is used, while for video stimuli, both the binocular and monocular algorithms detect around 40% of smooth pursuit movements. The present article shows that using binocular information for discrimination of fixations and smooth pursuit movements is advantageous in static stimuli, without impairing the algorithm's ability to detect smooth pursuit movements in video and moving-dot stimuli. With an automated evaluation strategy, time-consuming manual annotations are avoided and a larger amount of data can be used in the evaluation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.