Abstract

Smooth pursuit eye movements (SPEMs) and saccadic eye movements are both commonly impaired following sport-related concussion (SRC). Typical oculomotor assessments measure individual eye movements in a series of restrictive tests designed to isolate features such as response times. These measures lack ecological validity for athletes because athletes are adept at simple tasks designed for the general population. Yet, because eye movement metrics are sensitive and well-characterized neuroanatomically, it would be valuable to test whether athletes exhibit abnormal eye movements with more challenging tasks. To address this gap in knowledge, we collected eye-tracking data during a sport-like task to gain insight on gaze behavior during active self-motion. SPEMs and saccadic eye movements were recorded during a sport-like visual task within 24-48 h following SRC. Thirty-six Division I student-athletes were divided into SRC and control (CON) groups. All participants completed two blocks of the Wii Fit© soccer heading game (WF) while wearing a monocular infrared eye tracker. Eye movement classification systems quantified saccadic amplitude (SA), velocity (SV), and count (SC); as well as SPEM velocity (SPV) and amplitude (SPA). Separate Mann-Whitney U tests evaluated SPA and SC and found no significant effects (SPA, p = 0.11; SC, p = 0.10). A multi-variate analysis of variance (MANOVA) for remaining variables revealed SPV was significantly greater in CON (p < 0.05), but the SRC group had greater SA and SV (p < 0.05). These findings suggest that during a sport-like task, to maintain foveation SRC subjects used larger amplitude, faster saccades, but exhibited slower SPEMs. Measuring oculomotor function during ecologically valid, sport-like tasks may serve as a concussion biomarker and provide insights into eye movement control after SRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call