Abstract
AbstractA nonparametric Bayesian model for histogram clustering is proposed to automatically determine the number of segments when Markov Random Field constraints enforce smooth class assignments. The nonparametric nature of this model is implemented by a Dirichlet process prior to control the number of clusters. The resulting posterior can be sampled by a modification of a conjugate-case sampling algorithm for Dirichlet process mixture models. This sampling procedure estimates segmentations as efficiently as clustering procedures in the strictly conjugate case. The sampling algorithm can process both single-channel and multi-channel image data. Experimental results are presented for real-world synthetic aperture radar and magnetic resonance imaging data.KeywordsSegmentation ResultBase MeasureSynthetic Aperture Radar ImageSampling AlgorithmDirichlet ProcessThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.