Abstract
The control methods of ground-based teleoperation rendezvous with variable time delay are surveyed. With the help of root locus method, the influences of time delay on the stability and performance of the control system are analyzed. Then, a time-delay compensator is designed to transfer the variable delay into a constant. A predictive model is established based on the relative dynamic equations. After that, a multivariable Smith predictor is designed based on the principle of Smith predictor, which makes the control input state variables independent of variable time delay. At the same time, the fuzzy control method is introduced to alleviate the uncertainties in the teleoperation rendezvous system. Finally, semi-physical simulations are carried out to verify the methods presented in this paper. Simulation results show that time-delay compensation and Smith-Fuzzy control are effective in alleviating the variable time delay and model uncertainties in the process of teleoperation rendezvous, and the success probability and control accuracy can be improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.