Abstract
Recently, some generalized metric spaces have been studied to obtain new fixed-point theorems. For example, the notion of S-metric space was introduced for this purpose. In this study, some fixed-point results are proved using different contractive conditions on S-metric spaces. Various techniques such as Hard-Rogers type contraction, Khan type contraction, Meir-Keeler-Khan type contraction are used in our theorems to be proved. These fixed-point results extend some known fixed-point theorems on S-metric spaces. Also, to illustrate obtained theoretical results, some examples are given using an S-metric which is not generated by any metric. As an application, a new fixed-circle result is presented using modified C-Khan type contraction on S-metric spaces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have