Abstract

Most of the decaying systems namely α-decay and proton radio activity have extremely narrow widths and hence are termed as quasi-bound states. There are three methods available for the computation of very narrow widths. First, the analytic S-matrix method which treats resonance as a pole in complex energy plane with its real part representing resonance energy and the imaginary part the half width. Another two methods namely (i) direct (D) method and (ii) distorted wave (DW) method are based on the property of the quasi-bound state wave function which is quite similar to a bound state wave function in the interior region and is matched with an outgoing spherical wave representing decaying behavior. We make a comparative study of these methods by applying them to the α-decay systems whose experimental results of Q-value and decay half-lives are known recently. It is observed that all the three methods give practically the same results for widths calculated at the same Q-value and explain the experimental results of Q-values and half-lives in several α-decaying nuclei quite well with a proper Coulomb nuclear interaction potential for the α+daughter nucleus system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.