Abstract

A ratiometric nanosensor was developed for detecting methyl orange (MO) based on down/up-conversion luminescence achieved by a triplet–triplet annihilation upconversion luminescence (TTA-UCL) system. The probe, utilizing sensitizer and annihilator fluorophores encapsulated in nanomicelles, demonstrated high sensitivity and selectivity for MO detection. The energy transfer from UCL to MO endowed the sensor with responsive capabilities. The unaffected triplet–triplet energy transfer process maintained the phosphorescence signal constant, serving as a reference to construct the ratiometric sensor along with the UCL signal. Additionally, a smartphone-assisted colorimetric detection method was also developed based on the ratiometric sensor, enabling rapid and convenient detection of MO without the need for a spectrometer. The performance of the nanosensor in real water samples confirmed its potential for practical environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.