Abstract

We present in this paper the structure resolution of a fluorinated inorganic-organic compound--Zn(3)Al(2)F(12)·[HAmTAZ](6)--by SMARTER crystallography, i.e. by combining powder X-ray diffraction crystallography, NMR crystallography and chemical modelling of crystal (structure optimization and NMR parameter calculations). Such an approach is of particular interest for this class of fluorinated inorganic-organic compound materials since all the atoms have NMR accessible isotopes ((1)H, (13)C, (15)N, (19)F, (27)Al, (67)Zn). In Zn(3)Al(2)F(12)·[HAmTAZ](6), (27)Al and high-field (19)F and (67)Zn NMR give access to the inorganic framework while (1)H, (13)C and (15)N NMR yield insights into the organic linkers. From these NMR experiments, parts of the integrant unit are determined and used as input data for the search of a structural model from the powder diffraction data. The optimization of the atomic positions and the calculations of NMR parameters ((27)Al and (67)Zn quadrupolar parameters and (19)F, (1)H, (13)C and (15)N isotropic chemical shifts) are then performed using a density functional theory (DFT) based code. The good agreement between experimental and DFT-calculated NMR parameters validates the proposed optimized structure. The example of Zn(3)Al(2)F(12)·[HAmTAZ](6) shows that structural models can be obtained in fluorinated hybrids by SMARTER crystallography on a polycrystalline powder with an accuracy similar to those obtained from single-crystal X-ray diffraction data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.