Abstract

N-heterocyclic carbene ligands (NHC) are widely utilized in catalysis and material science. They are characterized by their steric and electronic properties. Steric properties are usually quantified on the basis of their static structure, which can be determined by X-ray diffraction. The electronic properties are estimated in the liquid state; for example, via the 77 Se liquid state NMR of Se-NHC adducts. We demonstrate that 77 Se NMR crystallography can contribute to the characterization of the structural and electronic properties of NHC in solid and liquid states. Selected Se-NHC adducts are investigated via 77 Se solid state NMR and X-ray crystallography, supported by quantum chemical calculations. This investigation reveals a correlation between the molecular structure of adducts and NMR parameters, including not only isotropic chemical shifts but also the other chemical shift tensor components. Afterwards, the liquid state 77 Se NMR data is presented and interpreted in terms of the quantum chemistry modelling. The discrepancy between the structural and electronic properties, and in particular the π-accepting abilities of adducts in the solid and liquid states is discussed. Finally, the 13 C isotropic chemical shift from the liquid state NMR and the 13 C tensor components are also discussed, and compared with their 77 Se counterparts. 77 Se NMR crystallography can deliver valuable information about NHC ligands, and together with liquid state 77 Se NMR can provide an in-depth outlook on the properties of NHC ligands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.