Abstract

Cities around the world are expanding dramatically, with urban population growth reaching nearly 2.5 billion people in urban areas and road traffic growth exceeding 1.2 billion cars by 2050. The economic contribution of the transport sector represents 5% of the GDP in Europe and costs an average of US <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\$ $ </tex-math></inline-formula> 482.05 billion in the United States. These figures indicate the rapid rise of industrial cities and the urgent need to move from traditional cities to smart cities. This article provides a survey of different approaches and technologies such as intelligent transportation systems (ITS) that leverage communication technologies to help maintain road users safe while driving, as well as support autonomous mobility through the optimization of control systems. The role of ITS is strengthened when combined with accurate artificial intelligence models that are built to optimize urban planning, analyze crowd behavior and predict traffic conditions. AI-driven ITS is becoming possible thanks to the existence of a large volume of mobility data generated by billions of users through their use of new technologies and online social media. The optimization of urban planning enhances vehicle routing capabilities and solves traffic congestion problems, as discussed in this paper. From an ecological perspective, we discuss the measures and incentives provided to foster the use of mobility systems. We also underline the role of the political will in promoting open data in the transport sector, considered as an essential ingredient for developing technological solutions necessary for cities to become healthier and more sustainable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call