Abstract

Design and fabrication of a smart bio-based polymeric material with potent biocompatibility and high performance still remain a challenge in the biomedical realm. In this context, a potential smart suture was fabricated from starch modified hyperbranched polyurethane (HPU) nanocomposites with different weight percentages of reduced carbon dots for the first time. The desired mechanical (tensile strength: 32.14 MPa, elongation at break: 1576% and toughness 439.28 MJ m−3) and thermal (286 °C) attributes of the suture were achieved with 2 wt% of reduced carbon dots in an HPU matrix. The non-contact self-tightening behavior was observed just within 15 s at body temperature of 37 °C ± 1 °C with notable shape fixity (99.6%) and shape recovery (99.7%) effects. The nanocomposites displayed in vitro biodegradability and hemocompatibility. Low lactate dehydrogenase activity and minimal red blood cell lysis indicated the anti-thrombogenicity and anti-hemolytic properties of the nanocomposites. The suitability of the fabricated nanocomposites as a smart biomaterial was supported by the inherent biocompatibility as observed by the growth and proliferation of smooth muscle cells and endothelial cells. Furthermore, they exhibited minimal immunogenic response (TNF α release). Thus, the study paves the way to biodegradable HPU nanocomposites as advanced non-contact triggered rapid self-tightening surgical sutures for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.