Abstract

The use of fiber-reinforced composite materials has widely spread in various sectors, including aerospace, defense, and civil industry. The assessment of these heterogeneous material systems is important for safer and risk-free applications and has contributed to the need for self-sensing composites. This work is focused on the development of piezoresistive composites, the prediction of their performance and structural health monitoring (SHM). Additionally, this work unpacks the complexity of carbon nanotubes (CNTs) micro-fabrication and the development of piezoresistive and electromagnetic (EM) waves detection electrodes. Scanning electron microscopy (SEM) was used to characterize the CNTs structure and morphologies. The manufactured CNTs were incorporated in epoxy systems to fabricate glass fiber reinforced polymer (GFRP)-CNTs smart composites with piezoresistive properties. The detection of micro-damage onset and its progression was carried out in mode I, to evaluate the sensitivity of the smart composites to damage development. The change in electrical conductivity of the nanotubes-reinforced composite systems due to localized mechanical strains enabled crack propagation detection. The relationship between crack propagation, fracture toughness, and electrical resistivity of the smart composite was analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.