Abstract
The use of cloud computing, big data, IoT, and mobile applications in the public transportation industry has resulted in the generation of vast and complex data, of which the large data volume and data variety have posed several obstacles to effective data sensing and processing with high efficiency in a real-time data-driven public transportation management system. To overcome the above-mentioned challenges and to guarantee optimal data availability for data sensing and processing in public transportation perception, a public transportation sensing platform is proposed to collect, integrate, and organize diverse data from different data sources. The proposed data perception platform connects multiple data systems and some edge intelligent perception devices to enable the collection of various types of data, including traveling information of passengers and transaction data of smart cards. To enable the efficient extraction of precise and detailed traveling behavior, an efficient field-level data lineage exploration method is proposed during logical plan generation and is integrated into the FlinkSQL system seamlessly. Furthermore, a row-level fine-grained permission control mechanism is adopted to support flexible data management. With these two techniques, the proposed data management system can support efficient data processing on large amounts of data and conducts comprehensive analysis and application of business data from numerous different sources to realize the value of the data with high data safety. Through operational testing in real environments, the proposed platform has proven highly efficient and effective in managing organizational operations, data assets, data life cycle, offline development, and backend administration over a large amount of various types of public transportation traffic data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.