Abstract

Telephysiotherapy has emerged as a vital solution for delivering remote healthcare, particularly in response to global challenges such as the COVID-19 pandemic. This study seeks to enhance telephysiotherapy by developing a system capable of accurately classifying physiotherapeutic exercises using PoseNet, a state-of-the-art pose estimation model. A dataset was collected from 49 participants (35 males, 14 females) performing seven distinct exercises, with twelve anatomical landmarks then extracted using the Google MediaPipe library. Each landmark was represented by four features, which were used for classification. The core challenge addressed in this research involves ensuring accurate and real-time exercise classification across diverse body morphologies and exercise types. Several tree-based classifiers, including Random Forest, Extra Tree Classifier, XGBoost, LightGBM, and Hist Gradient Boosting, were employed. Furthermore, two novel ensemble models called RandomLightHist Fusion and StackedXLightRF are proposed to enhance classification accuracy. The RandomLightHist Fusion model achieved superior accuracy of 99.6%, demonstrating the system's robustness and effectiveness. This innovation offers a practical solution for providing real-time feedback in telephysiotherapy, with potential to improve patient outcomes through accurate monitoring and assessment of exercise performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.