Abstract

Variable distributed energy resources (DERs) such as photovoltaic (PV) systems and wind power systems require additional power resources to control the balance between supply and demand. Battery energy storage systems (BESSs) are one such possible resource for providing grid stability. It has been proposed that decentralized BESSs could help support microgrids (MGs) with intelligent control when advanced functionalities are implemented with variable DERs. One key challenge is developing and testing smart inverter controls for DERs. This paper presents a standardized method to test the interoperability and functionality of BESSs. First, a survey of grid-support standards prevalent in several countries was conducted. Then, the following four interoperability functions defined in IEC TR 61850-90-7 were tested: the specified active power from storage test (INV4), the var-priority Volt/VAR test (VV) and the specified power factor test (INV3) and frequency-watt control (FW). This study then out-lines the remaining technical issues related to basic BESS smart inverter test protocols.

Highlights

  • Microgrids composed of distributed power from fluctuating renewable energy, such as photovoltaic (PV) system and wind power generation system, have raised concerns about the quality of the power that they produce owing to factors such as frequency and voltage fluctuations

  • This paper presents a standardized method to test the interoperability and functionality of Battery energy storage systems (BESSs)

  • The testing methods are inspected to ensure that they are comprehensive, consistent, and as uniform as possible. These requirements are based on the technical requirements and grid connection regulations relating to grid support functions that are required for each country’s distributed power sources in the present or that will be required in the future

Read more

Summary

Introduction

Microgrids composed of distributed power from fluctuating renewable energy, such as photovoltaic (PV) system and wind power generation system, have raised concerns about the quality of the power that they produce owing to factors such as frequency and voltage fluctuations. SIRFN is an international network of smart grid research facilities with 15 participating countries. It consists of four subgroups [22]: Smart Grid Distribution Automation Advanced Laboratory Testing Methods Power System Testing Test Protocols for Advanced Inverter Functions. The AIST takes part in planning the activities of the Test Protocols for Advanced Inverter Functions subgroup; it develops and verifies interoperable testing standards based on international compliance and consensus for next-generation distributed energy resources (DERs) using smart inverters. This study will introduce the AIST’s work regarding smart inverters stemming from SIRFN activities It will report on tests and testing results regarding the functions that allow battery smart inverters to support microgrid power quality (re: voltage & frequency control).

Global Trends for Smart Inverters
Smart Inverter Function Testing
Smart Inverter Testing Method Inspection Results
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.