Abstract

Surface impregnation of concrete structures with a migrating corrosion inhibitor is a promising and non-invasive technique for increasing the lifetime of existing structures that already show signs of corrosion attack. The main requirement for inhibitors is their ability to diffuse the rebar at a sufficient rate to protect steel. The use of smart nanocontainers such as layered double hydroxides (LDH) to store corrosion inhibitors significantly increases efficiency by providing an active protection from chloride-induced corrosion. The addition of LDH to reinforced mortar can also improve the compactness and mechanical properties of this matrix. Here, we report the synthesis of a magnesium-aluminum LDH storing glutamine amino acid as a green inhibitor (labeled as Mg-Al-Gln), which can be used as a migrating inhibitor on mortar specimens. The corrosion behavior of the specimens was determined via electrochemical techniques based on measurements of corrosion potential and electrochemical impedance spectroscopy. A cell containing a 3.5% NaCl solution was applied to the mortar surface to promote the corrosion of embedded rebars. The specimens treated with Mg-Al-Gln presented an improved corrosion protection performance, exhibiting an increase in polarization resistance (Rp) compared to the reference specimens without an inhibitor (NO INH). This effect is a consequence of a double mechanism of protection/stimuli-responsive release of glutamine and the removal of corrosive chloride species from the medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.