Abstract

The influence of phosphate as a corrosion inhibitor on the corrosion behavior of as-received and pre-rusted reinforcing steels in mortar specimens was investigated after 360days exposure in 3.5% NaCl solution. This involved the use of electrochemical techniques for studying the steel surface reactions and microscopic observations of the steel–mortar interface. The electrochemical methods, including electrochemical impedance spectroscopy (EIS) and measurements of corrosion potential (Ecorr) and linear polarization resistance (LPR), were employed to evaluate the corrosion tendency and general corrosion rate of steel. In addition, the pitting corrosion resistance of steel was also determined by cyclic polarization (CP) measurements. The results indicate that different from nitrite, which is generally accepted as an anodic inhibitor, phosphate may be a cathodic inhibitor according to its reduced corrosion rate and more negative Ecorr at the same dosage as nitrite in mortar specimens. The study also reveals that the inhibiting efficiency of phosphate against general corrosion of both as-received and pre-rusted specimens is lower than 10%, which is inferior to nitrite in some respects. However, as indicated by cyclic polarization measurements, the presence of phosphate provides slightly higher pitting corrosion resistance in comparison to nitrite. Furthermore, it suggests that the corrosion inhibition mechanism of phosphate in mortars mainly depends on a dual effect occurring at the steel–mortar interface. Furthermore, it is confirmed that phosphate has little effect on the long-term mechanical properties of mortars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call