Abstract

BackgroundPoor postures of the spine have been considered in association with a number of spinal musculoskeletal disorders, including structural deformity of the spine and back pain. Improper posturing for the patients with spinal disorders may further deteriorate their pain and deformities. Therefore, posture training has been proposed and its rationale is to use the patient's own back muscles to keep the spine within the natural curvature. A posture training device may help to facilitate this therapeutic approach by providing continuous posture monitoring and feedback signals to the patient when "poor" posture is detected. In addition, the users of the device may learn good postural habits that could carry over into their whole life.MethodsA smart garment with integrated accelerometers and gyroscopes, which can detect postural changes in terms of curvature variation of the spine in the sagittal and coronal planes, has been developed with intention to facilitate posture training. The smart garment was evaluated in laboratory tests and with 5 normal subjects during their daily activities.ResultsLaboratory tests verified that the accuracy of the system is < 1° and < 1.5° in static and dynamic tilting measurements respectively. The results showed that the smart garment could facilitate subjects to prevent prolonged poor postures of the spine, especially the posture of the lumbar spine in which at least 40% of the time in poor posture were reduced.ConclusionThe smart garment has been developed to be a portable and user-friendly trunk posture monitoring system and it could be used for collection of the trunk posture information and provision of instant feedback to the user if necessary for posture training purpose. The current pilot study demonstrated that the posture of normal subjects could be monitored and trained via this smart garment. With further clinical investigations, this system could be considered in some flexible spinal deformities such as scoliosis and kyphosis.

Highlights

  • Poor postures of the spine have been considered in association with a number of spinal musculoskeletal disorders, including structural deformity of the spine and back pain

  • Apart from physical deformity of the spine, postural and proprioceptive dysfunctions are suggested to be the common defect of idiopathic scoliosis [6,7,8,9], which may deteriorate the spinal deformities

  • The aim of this study is to introduce a smart garment with integrated accelerometers and gyroscopes which can detect postural change in terms of curvature variation of the spine in the sagittal and coronal planes, and demonstrate the feasibility of the smart garment in guiding normal subjects to keep away from poor posture of the spine during daily activities

Read more

Summary

Introduction

Poor postures of the spine have been considered in association with a number of spinal musculoskeletal disorders, including structural deformity of the spine and back pain. Improper posturing for the patients with spinal disorders may further deteriorate their pain and deformities. Poor postures of the spine, deviations from the "natural curvature of the spine", have been considered in association with a number of spinal musculoskeletal disorders, including structural deformity of the spine and back pain [1,2,3,4,5]. Spinal disorders could occur in different populations, including growing, working and aging populations. Apart from physical deformity of the spine, postural and proprioceptive dysfunctions are suggested to be the common defect of idiopathic scoliosis [6,7,8,9], which may deteriorate the spinal deformities. Twentyfive percent of women who are with age > 50 years in the general population have one or more vertebral fractures resulting in loss of height and increased kyphosis (round back)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call