Abstract
The task of gathering data from nodes within mobile ad-hoc wireless sensor networks presents an enduring challenge. Conventional strategies employ customized routing protocols tailored to these environments, with research focused on refining them for improved efficiency in terms of throughput and energy utilization. However, these elements are interconnected, and enhancements in one often come at the expense of the other. An alternative data collection approach involves the use of Unmanned Aerial Vehicles (UAVs). In contrast to traditional methods, UAVs directly collect data from mobile nodes, bypassing the need for routing. While existing research predominantly addresses static nodes, this paper proposes an evolutionary based, innovative path selection approach based on future position prediction of caching enabled mobile ad-hoc wireless sensor network nodes for UAV data collection, aimed at maximizing node encounters and gathering the most valuable information in a single trip. The proposed technique is evaluated for different movement models and parameter configurations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.