Abstract
Solar photovoltaic (PV) systems unpredictable characteristics and tight grid-codes demand power electronic-based energy conversion devices. Hence, as the power levels generated by the solar PV systems rise, multi-level voltage source converters (VSC) and their control mechanisms become more necessary for effective energy conversion. Continuous control set model predictive control (CCS-MPC) is a class of predictive control approach that has emerged recently for the applications of power converters and energy conversion systems. In this paper, an artificial neural network (ANN) based controller for single-stage grid-connected PV is implemented. The CCS-MPC is used as an expert / a teacher to generate the data required for off-line training of the neural network controller. After the off-line training, the trained ANN can fully control the inverter’s output voltage and track the maximum power point (MPP) without the need for MPC during testing. The proposed control technique is assessed under various operating conditions. Based on the results obtained, it is observed that the proposed techniques offer improved objective tracking and comparative dynamic response with respect to the classical approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.