Abstract

Smart adhesives possess a wide range of applications owing to their reversibly and repeatedly switchable adhesion in transfer technology. Despite recent advances, it still remains a technical and scientific challenge to achieve strategies for rapidly tunable adhesion in a noncontact manner. In this study, a smart adhesive to achieve dynamically tunable adhesion is developed. Specifically, a mushroom-shaped adhesive with a magnetized tip is actuated to reversibly and rapidly transform the morphology via magnetic actuation. The smart adhesive has two working modes, namely, selective pickup mode and pick-and-place mode. In the selective pickup mode, the external magnetic field is applied and the tip undergoes bending deformation. Changes in tip morphology allow for a reversible switch of the adhesion between "turn on" and "turn off." In the pick-and-place mode, the external magnetic field is applied when the target object needs to be released. Upward bending deformation of the micro-beam, a part of the tip, creates an initial crack at the edge of the adhesion interface. The propagation of the edge crack modulates the adhesion from strong to weak and the target object is instantly released. The proposed smart adhesive may be of interest for practical applications demanding highly precise and swiftly controlled movements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call