Abstract

Coulomb explosion imaging, which is the reconstruction of a molecular structure by measuring the three-dimensional momenta of atomic ions formed by a Coulomb explosion of multiply charged molecular cations (MMCs), has been utilized widely. In contrast, intact MMCs, whose properties and reactions are interesting from both fundamental and applied scientific perspectives, themselves have been little explored to date. This study demonstrates that the four-atom molecule diiodoacetylene (DIA) can survive as a long-lived species in the gas phase after the removal of four electrons in intense femtosecond laser fields. The electron configurations of the equilibrium structures of the electronic ground states calculated by the complete active space self-consistent field (CASSCF) method reveal the stability of multiply charged DIA. The dissociation energies are estimated to be 3.01, 3.59, 2.57, 1.82, and 1.61 eV for neutral, cation radical, dication, trication radical, and tetracation, respectively. A fairly deep potential well suggests that a DIA tetracation is metastable toward dissociation, whereas the repulsive potential of a pentacation radical confirms its absence in the mass spectrum. With their sufficiently long lifetimes, minimum number of atoms, and simple dissociation paths, DIA MMCs are promising candidates for further experimental and theoretical investigations of multiply charged ion chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.