Abstract

A novel stochastic Complete Active Space Self-Consistent Field (CASSCF) method has been developed and implemented in the Molcas software package. A two-step procedure is used, in which the CAS configuration interaction secular equations are solved stochastically with the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) approach, while orbital rotations are performed using an approximated form of the Super-CI method. This new method does not suffer from the strong combinatorial limitations of standard MCSCF implementations using direct schemes and can handle active spaces well in excess of those accessible to traditional CASSCF approaches. The density matrix formulation of the Super-CI method makes this step independent of the size of the CI expansion, depending exclusively on one- and two-body density matrices with indices restricted to the relatively small number of active orbitals. No sigma vectors need to be stored in memory for the FCIQMC eigensolver--a substantial gain in comparison to implementations using the Davidson method, which require three or more vectors of the size of the CI expansion. Further, no orbital Hessian is computed, circumventing limitations on basis set expansions. Like the parent FCIQMC method, the present technique is scalable on massively parallel architectures. We present in this report the method and its application to the free-base porphyrin, Mg(II) porphyrin, and Fe(II) porphyrin. In the present study, active spaces up to 32 electrons and 29 orbitals in orbital expansions containing up to 916 contracted functions are treated with modest computational resources. Results are quite promising even without accounting for the correlation outside the active space. The systems here presented clearly demonstrate that large CASSCF calculations are possible via FCIQMC-CASSCF without limitations on basis set size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call