Abstract

Magnetic particle imaging (MPI) has garnered significant attention in biomedical imaging research due to its excellent signal intensity that is generated directly from superparamagnetic iron oxide nanoparticles (SPIONs). Small nanoparticle tracers with high saturation magnetisation are crucial for MPI as they can prolong circulation, crossing the blood brain barrier and enhance cellular uptake. In this work, we demonstrate small zinc doped iron oxide nanoparticles (Zn-IONPs) are excellent MPI tracers. Our Zn-IONPs exhibited up to 37 % and 64% enhancement in saturation magnetisation (Msat) value and MPI signal intensity respectively compared to Fe3O4 of the same size. As a result, the polymer encapsulated Zn-IONPs achieved up to 2.7-fold enhancement in MPI signal intensity compared to VivoTrax. Furthermore, these polymer encapsulated NPs were also determined to be non-toxic hence making these Zn-IONPs ideal for many biomedical applications in MPI where small size is critical to prolong circulation time and crossing the blood brain barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call