Abstract

In this paper, small-sized monodisperse Ag nanocrystals (NCs) have been successfully synthesized at gram-scale by thermal reduction of a large amount of solid AgNO3 (more than 10 mmol) with dodecylamine in 1-octadecene solvent. The formation process of the Ag NCs is different from that of a conventional homogeneous phase synthetic system. According to the temperature- and time-dependent experiments, a high temperature “digestive ripening” mechanism is suggested to elucidate their formation process. The size of Ag NCs can be easily controlled by the amount of solid AgNO3 added and the reaction temperature. Furthermore, the obtained Ag NCs are found to possess extraordinary catalytic activity, which can catalyze a series of Sonogashira reactions with high yield. Interestingly, under identical conditions, their catalytic activities are higher than that of similar sized Pd NCs, showing great promise for the substitution of conventional Pd-based catalysts to apply in the Sonogashira reaction. This developed synthetic strategy together with the fundamental understanding of heterogeneous nucleation and growth has great potential towards the contriving rational route for mass production of nanomaterials for advanced catalytic and other functional applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.