Abstract

Alkaline polymer electrolyte fuel cells (APEFCs) have achieved notable advancements in peak power density, yet their durability during long-term operation remains a significant challenge. It has been recognized that increasing the hydrophobicity of the catalyst layer can effectively alleviate the performance degradation. However, a microscopic view of how hydrophobicity contributes to the stability of the catalyst layer microstructure is not clear. Here, we construct a membrane electrode assembly (MEA) with enhanced structural stability and durability by incorporating polytetrafluoroethylene (PTFE) particles into the catalyst layer. MEAs modified by this approach exhibit stabilized voltage platforms in current step tests and reduced hysteresis in current-voltage polarization curves during operation, indicating the critical role of PTFE in the removal of the excess water within the catalyst layer. Fuel cells with PTFE modification show more than 45% increase in electrochemical durability. By characterizing with field-emission scanning electron microscopy (FE-SEM) the surface and the internal microstructures of MEAs after durability tests, we find that the catalyst layers modified by PTFE experience much less reduction in porosity and less agglomeration of the solid components. These findings elucidate the microscopic mechanisms by which hydrophobicity promotes a more stable catalyst layer structure, thereby enhancing the durability of APEFCs. This research advances our understanding of hydrophobicity's impact on catalyst layer stability and offers a practical method to enhance the durability of APEFCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.